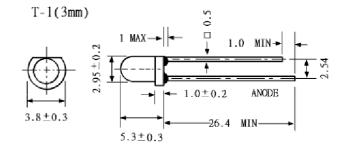
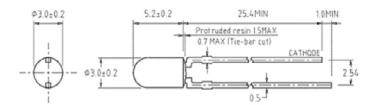
FEATURES

- Highly Luminous Ultra Bright
- InGaN Technology Chip
- YAG Phosphor
- Super Luminous Intensity 4500 mcd
- High Luminous Flux 2.4 lm
- Extremely Uniform White Light
- Water Clear Resin Package
- Precise A, B, C, D Color Bin Selections
- 5mm Resin Mold with 3mm size option
- Wide Viewing Angles 23°, 30°, 60°

BENEFITS


- Low Energy Consumptions
- Low Maintenance Costs
- High Application Design Flexibility
- High Reliability
- Prompt Shipment
- Very Competitive prices


APPLICATIONS

- Torch / Miniature Flash Lights
- Garden Lights
- Microscope Illuminators (Ring Lights)
- Electronic Displays and Signals
- Legend Back Lights
- Optical Indicator Lights
- Display / Decoration Lights
- Cavity Lights/ Effect Lights
- Desk Lamp Lights

- Channel Letter Lights
- Lantern Lights
- Solar Energy Lights
- Traffic Lights and Signals
- Automotive Interior Lights

Package Dimensions

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance ± 0.25 (0.01") mm unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm (0.04") max.
- 4. Lead spacing is measured where the leads emerge from the package
- 5. Specifications are subject to change without prior notice.

Delivery

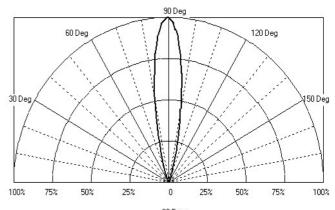
- Bulk, 500 pieces per bag standard
- Ammo or Reel are available upon request

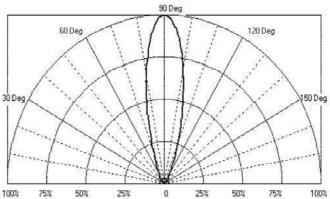
CAUTION: *YZ-WS 3* series LEDs are *Class 1 ESD* sensitive. Static Electricity and surge damage the LEDs. It is recommended to use a wristband or anti-electrostatic glove when handling LEDs. All devices, equipment and machinery must be properly grounded.

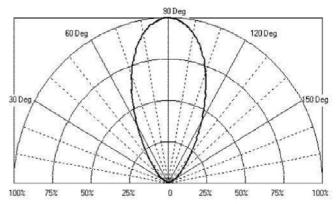
Absolute Maximum Ratings at Ta = 25°C

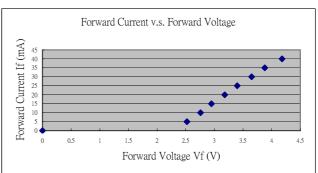
Forward Voltage	V _f	3.2 ± 0.3 V
Continuous Forward Current	I _f	30 mA
Power Dissipation	P _d	120 mW
Peak Forward Current	I _{fp}	150 mA
Derating Factor		0.40 mA/ °C
Reverse Voltage	V _r	5 V
Operating Temperature	T _{op}	-25 ~ +85°C
Storage Temperature	T _{stg}	-35 ~ +100°C
Soldering Temperature	T _{sd}	260°C / 5 Sec

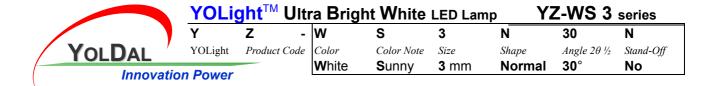
Luminous Intensity I_v at I_f = 20 mA

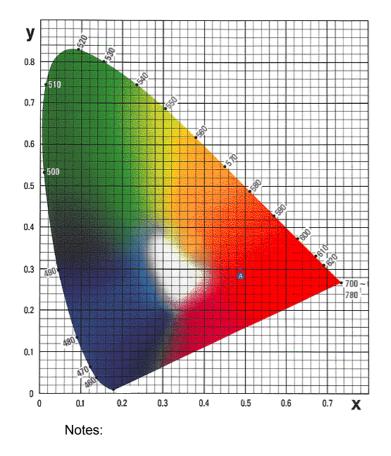

Туре	Rank R Rank S			3	
Unit: mcd	Min.	Тур.	Max/Min.	Тур	Max
YZ-WS 3N23	2700	3200	3500	4000	4500
YZ-WS 3N30	1700	2000	2400	2900	3500
YZ-WS 3N60	850	1000	1200	1500	1800


Luminous Flux Φv at $I_f = 20 \text{ mA}$


Туре	Rank R Rank S			3	
Unit: Im	Min.	Тур.	Max/Min.	Тур	Max
YZ-WS 3N23	1.8	2.0	2.2	2.4	2.6
YZ-WS 3N30	1.8	2.0	2.2	2.4	2.6
YZ-WS 3N60	1.8	2.0	2.2	2.4	2.6


Typical Electrical / Optical Characteristics Curves at Ta = 25°C


Beam Pattern



Sunny White Color Coordinates

X	0.441	0.443	0.485	0.481
Υ	0.462	0.426	0.427	0.463

ICI Chromaticity Diagram

- 1. The luminous intensity is measured by the CIE 1931 eye-response method with Tolerance ±15%.
- 2. The chromaticity coordinates are derived from the CIE 1931 chromaticity diagram and represent the perceived colors of the device.
- 3. Color Note: Sunny White
- 4. Lens Size:5: 5mm standard / 3: 3mm Option
- Lens Shape:N: Normal Shape
- 6. Angle 2θ ½: 23: 23±3° / 30: 27°±3° / 60: 57°±3°
- 7. Stand Off: N: Non Stand-Off

Note: All data showing in this product specification are measured by proper experiment conditions and instruments. However, those data may be different due to variations of testing instruments and conditions.